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a b s t r a c t

Ecologists can be overwhelmed by the number of metrics available to quantify landscape

structure. Clarification of interrelationships and redundancy is needed to guide metric

selection and interpretation for the purpose of landscape monitoring. In this study we

identified independent components of class- and landscape-level structure in multiple

landscapes in each of three large and geographically disjunct study areas. We used FRAG-

STATS and principal components analysis (PCA) to identify independent components of

landscape structure, and cluster analysis to group the components. We then calculated the

universality, strength, and consistency of the identified landscape structure components. At

the class-level we identified 24 independent configuration components. Seven of these

components were nearly universal and consistent in interpreted meaning. At the land-

scape-level there were 17 independent structure components. Eight of these components

were universal and consistent. These results indicate that there are consistent combina-

tions of metrics that universally describe the major attributes of landscape structure at the

levels.

Published by Elsevier Ltd.

Landscape metrics
 class- and landscape-
1. Introduction

Over the past two decades there has been a proliferation of

statistical measures of landscape structure (O’Neill et al., 1988;

Turner, 1990; Turner and Gardner, 1991; Baker and Cai, 1992; Li

and Reynolds, 1995; McGarigal and Marks, 1995; Gustafson,

1998; He et al., 2000; Jaeger, 2000; McGarigal et al., 2002). While

this effort has provided scientists with a wealth of information

about landscape structure, it has also created a potentially

large source of confusion. The proliferation of metrics poses a

serious challenge for the investigator to determine how many

components of landscape structure are relevant and which

metrics should be used to represent those components. It is

desirable to use the smallest number of independent metrics

which sufficiently quantify landscape structure. However, it is
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difficult to know a priori what this set of metrics will be for any

landscape.

Metric selection is also hampered by several characteristics

of the metrics themselves. First, there is seldom a one-to-one

(i.e., linear) relationship between metric values and landscape

structure (Gustafson and Parker, 1992; Hargis et al., 1998;

Baldwin et al., 2001; McGarigal, 2002; Neel et al., 2004). Further,

many metrics simultaneously measure multiple aspects of

structure, confounding landscape composition (i.e., the

variety and abundance of patch types within the landscape)

and configuration (i.e., the spatial character and arrangement,

position, or orientation of patches within the class or land-

scape) (McGarigal and Marks, 1995; Gustafson, 1998). In

addition, some metrics are inherently redundant because

they are alternate ways of representing the same basic
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information (e.g., mean patch size and patch density). In other

cases, metrics may be empirically redundant, not because

they fundamentally measure the same aspect of structure, but

because for the landscapes under investigation, different

aspects of landscape structure are correlated.

Previous studies have attempted to determine if the major

components of landscape structure can be represented by a

parsimonious suite of independent metrics (e.g., McGarigal

and McComb, 1995; Riitters et al., 1995; Cain et al., 1997; Scanes

and Bunce, 1997; Tinker et al., 1998; Griffith et al., 2000; Lausch

and Herzog, 2002; Cifaldi et al., 2004; Linke and Franklin, 2006;

Schindler et al., 2008). Each of these studies suggested that

patterns can be characterized by relatively few components;

however, the identified components differed among the

studies. This lack of concordance in important landscape

structure components raises the possibility that there are no

fundamentally important aspects of landscape structure and

instead that structure patterns are peculiar to specific land-

scapes. The apparent lack of fundamental components is,

however, more likely a consequence of the fact that the

different studies did not use the same pool of metrics and used

different methods to identify components. McGarigal and

McComb (1995), for example, identified a set of components

based on a small number of class-level metrics in 30

landscapes within a single geographical area. Prior to factor

analysis, the percent of landscape in the focal class was

partialled out to remove effects of class area on landscape

configuration. In contrast, Riitters et al. (1995) quantified

redundancy of landscape-level metrics from 85 landscapes

sampled across a vast geographical space. However, their

analysis did not explicitly assess consistency of component

meaning or universality of component presence among

regions, nor did it separate effects of area and configuration.

The overall goal of this study was to identify independent

components of landscape structure in three geographically

isolated regions and to determine whether the identified

components were idiosyncratic or whether components were

common across class types and regions. Structural compo-

nents analyzed in this study are principal components (i.e.,

composite variables). They are the major independent

dimensions of landscape structure that exist among the

measured landscapes. We evaluated the importance of each

component using three measures: universality, strength, and

consistency. Universality is the percentage of classes or

regions in which a component is found. Strength is assessed

as the average variance explained by a structure component

across classes and regions. Consistency measures the stability

of component interpretation among classes and regions.

We combine the strengths of the previous studies by

sampling a large number of landscapes from a variety of

physiographic provinces (e.g., Riitters et al., 1995; Cain et al.,

1997) and by separating effects of landscape composition from

configuration at the class-level (McGarigal and McComb, 1995).

We improve on those studies by including a larger number of

metrics, by examining landscape- and class-level metrics

separately, and by evaluating the importance of landscape

structure gradients across classes and regions. Our analysis

did not focus on functional metrics that are explicitly related

to ecological processes. By definition, functional metrics

change in definition and interpretation with changes in the
goals and methods of study. We focused on ‘objective’

structure metrics because they are constant among studies.

Analyses similar to this, but using functional metrics, would

be useful within the context of particular ecological analyses.
2. Methods

2.1. Study areas

The study was conducted using landscape maps from three

large, disjunct geographical regions in the United States. The

first region included an approximately 15,000 km2 portion of

western Massachusetts that is dominated by mixed decid-

uous–coniferous forests and characterized by rolling hills,

agricultural valleys and scattered urban and residential

development. It includes the Berkshire Hills, Connecticut

River Valley, and Worcester Plateau regions of Massachusetts.

The landcover map used in this analysis was created from

1999 aerial photography with a minimum mapping unit of

0.1 acre. We converted the original vector coverage into a grid

with a 30 m cell size and reclassified it into seven cover classes

to ensure adequate distribution of classes across sub-land-

scapes (see below). The seven classes included forest, water,

grassland, cropland, urban, high-density residential, and low-

density residential.

The second region was the 8480 km2 San Juan National

Forest in southwestern Colorado. This mountainous land-

scape has rugged topography and extreme elevational relief.

Landcover is zonal, with Ponderosa pine (Pinus ponderosa)

forest in the lower elevations, mixed-coniferous and aspen

(Populus tremuloides) forest in the middle elevations, and

spruce-fir forest (primarily Picea engelmannii and Abies lasio-

carpa) and treeless alpine communities at the highest

elevations. The landcover map used in this analysis was

derived from the USDA Forest Service Integrated Resources

Inventory (IRI) and Resources Information System (RIS)

database. The coverage was a grid with a 25 m cell size. We

maintained the original resolution to avoid errors related to

resampling and reclassified it into four cover classes to ensure

adequate distribution of all classes across sub-landscapes. The

four cover classes included forest, water, riparian, and non-

forested.

The third region was an approximately 20,000 km2 area of

central Idaho. This region is also mountainous with zonal

landcover. The landcover map was developed by the Idaho

Gap Analysis project with 30-m pixels. We reclassified the map

into five cover classes, including forest, rock, riparian, grass,

and shrub with the same goal of ensuring adequate distribu-

tion of all classes across sub-landscapes.

We superimposed a square grid with 256 cells per side and

clipped each of the three regional landcover maps into non-

overlapping sub-landscapes of these dimensions. This process

resulted in 155 sample landscapes for western Massachusetts,

152 sample landscapes for the San Juan National Forest, and

221 for central Idaho. We chose this sub-landscape size to

ensure adequate representation of all classes in most sampled

landscapes, while yielding a sufficient number of landscapes

to provide an approximately three-to-one sample to variable

ratio for principal components analysis (PCA).



Table 1 – List of the 49 class-level (C) and 54 landscape-level (L) landscape structure metrics calculated for the analysis (see
McGarigal et al., 2002 for a complete description of each metric)

Metric number Level Acronym Name

0 C, L PLAND Proportion of landscape

1 C, L PD Patch density

2 C, L LPI Largest patch index

3 C, L ED Edge density

4 C, L LSI Landscape shape index

5 C, L AREA_MN Mean patch size

6 C, L AREA_AM Area–weighted mean patch size

7 C, L AREA_CV Patch size coefficient of variation

8 C, L GYRATE_MN Mean radius of gyration

9 C, L GYRATE_AM Correlation length

10 C, L GYRATE_CV Radius of gyration coefficient of variation

11 C, L SHAPE_MN Mean shape index

12 C, L SHAPE_AM Area–weighted mean shape index

13 C, L SHAPE_CV Shape index coefficient of variation

14 C, L FRAC_MN Mean fractal dimension

15 C, L FRAC_AM Area–weighted mean fractal dimension

16 C, L FRAC_CV Fractal dimension coefficient of variation

17 C, L PARA_MN Mean perimeter–area ratio

18 C, L PARA_AM Area–weighted mean perimeter–area ratio

19 C, L PARA_CV Perimeter–area ratio coefficient of variation

20 C, L DCAD Disjunct core area density

21 C, L CORE_MN Mean core area

22 C, L CORE_AM Area–weighted mean core area

23 C, L CORE_CV Core area coefficient of variation

24 C, L DCORE_MN Mean disjunct core area

25 C, L DCORE_AM Area–weighted mean disjunct core area

26 C, L DCORE_CV Disjunct core area coefficient of variation

27 C, L CAI_MN Mean core area index

28 C, L CAI_AM Area–weighted mean core area index

29 C, L CAI_CV Core area coefficient of variation

30 C, L PROX_MN Mean proximity index

31 C, L PROX_AM Area–weighted mean proximity index

32 C, L PROX_CV Proximity index coefficient of variation

33 C, L SIMI_MN Mean similarity index

34 C, L SIMI_AM Area–weighted mean similarity index

35 C, L SIMI_CV Similarity coefficient of variation

36 C, L ENN_MN Mean nearest neighbor distance

37 C, L ENN_AM Area–weighted mean nearest neighbor distance

38 C, L ENN_CV Nearest neighbor distance coefficient of variation

39 C, L CWED Contrast weighted edge density

40 C, L TECI Total edge contrast index

41 C, L ECON_MN Mean edge contrast

42 C, L ECON_AM Area–weighted mean edge contrast

43 C, L ECON_CV Edge contrast coefficient of variation

44 C, L CLUMPY Clumpiness index

45 C, L PLADJ Proportion of like adjacencies

46 C, L IJI Interspersion/juxtaposition index

47 C, L COHESION Patch cohesion

48 C, L SPLIT Splitting index

49 C, L AI Aggregation index

50 L MESH Mesh size

51 L DIVISION Division index

52 L PRD Patch richness density

53 L SIDI Simpson’s patch diversity

54 L SIEI Simpson’s patch evenness

PLAND is the covariable in the partial principal components analyses at the class-level.
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2.2. Principal component analyses

For each cover class in each sample landscape we calculated

49 class-level landscape structure metrics using the computer

program FRAGSTATS version 3.2 (McGarigal et al., 2002;
Table 1). We included the full range of class-level metrics

available for quantifying landscape structure at the time of our

analysis, after eliminating those that are computationally

redundant. We conducted a partial PCA (pPCA) analysis on the

correlation matrix using PROC FACTOR in SAS (SAS, 2002) for
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each cover class in each of the three regions. We used varimax

rotation to maximize component interpretability. For each

cover class, the variable PLAND (percent of the cover class in

the landscape) was partialed out. The partial analysis extracts

the major components in the class-level metrics that are

linearly independent of the amount of that cover class

present. In effect, the partial PCA removes the effect of

landscape composition, and the resulting components are the

major independent dimensions of landscape configuration at

the class-level. We retained all components that were

significant based on the latent root criterion (McGarigal

et al., 2000). Due to early concerns that removing the linear

relationship between PLAND and landscape structure com-

ponents would obscure any known and unknown underlying

nonlinear relationships, during exploratory analyses we also

used nonlinear regression techniques to partial out nonlinear

relationships between PLAND and each metric separately

prior to PCA. The results were similar to pPCA, suggesting that

within the range of real landscape patterns sampled, these

nonlinearities were subordinate to the predominantly linear

relationships.

We calculated 54 landscape-level metrics for each sub-

landscape in each of the three regions (Table 1). As with the

class-level metrics, we included the full range of available

landscape-level metrics after eliminating those that were

inherently redundant (McGarigal et al., 2002). We conducted a

PCA separately for each of the three regions. Because there is

no landscape-level measure equivalent to PLAND we did not

use partial PCA. As a result, the landscape-level components

confound composition and configuration.

2.3. Polythetic agglomerative hierarchical clustering

We used polythetic agglomerative hierarchical clustering with

average linkage (SAS, 2002) to combine the individual land-

scape structure components extracted by PCA into groups

based on factor pattern similarity. The factor pattern for a

component is the list of the Pearson’s correlation coefficients

between each contributing metric and that component. The

degree of similarity in factor patterns between two compo-

nents indicates the degree of similarity of the components in

terms of the landscape structure gradient they represent. To

derive the distance matrices for the cluster analyses we first

computed the Pearson correlation matrix between the factor

patterns of each principal component to be clustered. We then

subtracted each jrj value in the correlation matrix from 1 so

that distance values ranged from 0 for perfect correlation of

factor patterns between two components, to 1 for no factor

pattern correlation. We clustered all PCA components, for all

cover classes, in all regions simultaneously (N = 211) to

identify the sets of class-level structure components that

were similar across cover classes and across regions. We based

the final cluster membership on the inflection point of the

scree-plot of fusion distances (McGarigal et al., 2000). For all

subsequent class-level analyses, we used this same distance

(0.59) as the cutoff for cluster membership, to ensure

consistency in cluster definition rules. At the landscape-level,

we conducted a single cluster analysis of all landscape-level

structure components from all three study regions (N = 35) to

group similar landscape-level structure components across all
regions. As in the class-level analysis, we based the final

cluster membership on the inflection point of the scree-plot of

fusion distances, which in the landscape-level clustering was

0.43.

2.4. Discriminant analysis and partial discriminant
analysis

We used weighted averaging discriminant analysis (DA) as

implemented in CANOCO 4 (ter Braak and Šmilauer, 1998) to

quantify the statistical significance of the identified clusters

across the three regions at both the class- and landscape-

levels and partial DA to quantify the influences of differences

among geographical regions on the stability of the extracted

landscape pattern components. At the class-level there were a

sufficient number of components (samples) to use all the

metrics in the DAs. At landscape-level we had more variables

than samples, invalidating analysis using the full data set. To

improve the sample to variable ratio for the landscape-level

analysis we used forward selection in CANOCO to select the 13

most significant landscape-level metrics for inclusion in the

discriminant models.

We assessed the significance of discrimination among

identified clusters using Monte Carlo permutation testing with

199 permutations (ter Braak and Šmilauer, 1998). In the partial

DA we included region as a set of dummy covariables to

account for differences that may exist in the structure

components between different regions (ter Braak and Šmi-

lauer, 1998). The change in the variance explained and

classification accuracy between the full and partial DA provide

a measure of the extent of regional differences in landscape

structure components.

2.5. Universality, strength, and consistency of landscape
pattern components

We used three measures (universality, strength, and consis-

tency) to quantify the overall importance of the landscape

structure components identified with clustering and DA.

Universality is simply the percentage of regions, for the

landscape-level analysis, and region-class combinations, for

the class-level analysis, in which the particular structural

component was present. For example, in the class-level

analysis, there are 16 possible universality scores, correspond-

ing to the how many times the component is present among

the 16 combinations of cover class and region. If a structural

component exists across all the cover classes in all the regions

studied, it reflects a universal dimension of landscape

structure.

Strength is a measure of the average variance accounted for

by a particular landscape structural component, when it is

present. Thus, a component is relatively strong if it tends to

explain a relatively large amount of the variance in the

constituent metrics. We measured the strength of each

identified structural component in two ways. First, the average

eigenvalue provides a quantitative measure of the amount of

variance among metrics the structural component captures

on average across regions, and across all class–region

combinations. Second, we computed the total variation

accounted for by each structural component as a percentage



Table 2 – Summary of the class-level partial principal components analysis results for the three study regions

Region Class No. of axes retained %Variation explained

Western Massachusetts Forest 14 86.5

Grassland 13 90.2

Cropland 12 89.2

High-density residential 12 90.4

Low-density residential 10 81.2

Urban 14 94.2

Water 14 81.7

San Juan National Forest Forest 15 92.2

Open 15 86.7

Riparian 14 82.6

Water 14 89.2

Central Idaho Forest 14 91.1

Grassland 13 91

Riparian 12 91.7

Rock (barren) 12 77.7

Shrubland 13 91

For each class in each region the table lists the number of axes retained based on the latent root criterion and the cumulative variance

explained by those axes.
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of the total variation of metrics across regions and cover

classes.

Consistency is a measure of how consistent the meaning of a

given landscape structural component is, when it is present.

Each principal component is a dimension through a multi-

dimensional space defined by the constituent metrics. A

consistent landscape structural component is one that is

oriented in nearly the same direction through this space for

each region or cover class. We measured consistency as the

average pair-wise Pearson’s correlation among the factor

patterns of the PC axes that are members of the same

structural component group. For example, suppose that in the

class-level analysis we found that a component predomi-

nantly related to edge contrast was present in 15 of the 16

cover classes across the three regions. We would quantify the

consistency of this component by computing the average pair-

wise correlations among the 120 combinations of the factor

patterns of the component group. High average correlation of

the factor patterns in a component group indicates that the

landscape component is highly consistent in terms of how the

different metrics contribute to it. Another way to think of

consistency is that high average pair-wise correlation is a

measure of how similarly the PCA components in that

component group are oriented in the ‘‘metric space’’. We

computed consistency scores over all regions at the land-

scape-level, and for all regions together at the class-level. In

each case, we compared the average in-group pair-wise

correlation of factor pattern to the average pair-wise correla-

tion among all possible component combinations.
3. Results

3.1. Class-level components

For each of the seven landcover classes in western Massa-

chusetts we retained 10–14 pPCA axes. These axes explained

between 81.7% and 94.2% of the variance in the 49 class-level
metrics, after accounting for the influences of PLAND (Tables 2

and 3). We retained 14 or 15 axes for each of the four landcover

classes in the San Juan National Forest, which accounted for

between 82.6% and 92.2% of the metric variance (Tables 2 and

3). In central Idaho we retained 12–14 axes for the five

landcover classes, explaining 77.7–91.7% of the metric var-

iance (Tables 2 and 3).

The cluster analysis of the full set of 211 retained pPCA axes

resulted in a 24-cluster solution. Canonical DA indicated that

the 24-cluster model was highly significant; not one of the 199

permutations reached a value as extreme as the sum of the

observed canonical axes. In addition, the model explained

>65% of the variance among groups, with canonical correla-

tions for each of the first four axes well over 0.9. These results

indicate that the 24 clusters identified are highly homoge-

neous and strongly distinguishable based on pPCA factor

loadings. Partial canonical DA showed that there was no

detectable effect of inter-regional differences on group

discrimination. The partial model was as highly significant

as the full model, also explained 65% of the variance among

groups, and also had canonical correlations of the first four

axes >0.9. Thus, the class-level differences among regions

have no measurable effect on cluster homogeneity or

separation. This finding is interesting because it implies that

the landscape structure components identified in the cluster-

ing have a high degree of similarity across these three very

different and geographically distinct study regions.

3.1.1. Universality of class-level components
Only one class-level landscape structure component, ‘‘edge

contrast’’, was completely universal, occurring in all cover

classes in all regions (Table 4). Another four components

(‘‘mean patch shape’’, ‘‘aggregation’’, ‘‘nearest neighbor

distance’’, and ‘‘patch dispersion’’) were nearly universal,

being present in >85% of cover classes. Three more compo-

nents (‘‘large patch dominance’’, ‘‘neighborhood similarity’’,

and ‘‘area–weighted correlation length and shape’’) were

present in >75% of cover classes (Table 4). In contrast, we



Table 3 – Meaning of 24 class-level configuration
components identified through partial principal compo-
nents analysis, clustering, and discriminant analysis

Component
number

Component name High
loadings

1 Edge contrast ECON_MN+

ECON_AM+

TECI+

2 Patch shape complexity FRAC_MN+

SHAPE_MN+

FRAC_AM+

FRAC_MN+

3 Aggregation AI+

PLADJ+

CLUMPY+

COHESION+

4 Nearest neighbor distance ENN_MN+

ENN_AM+

5 Patch dispersion ENN_CV+

6 Large patch dominance LPI+

CORE_AM+

DCORE_AM+

AREA_AM+

7 Neighborhood similarity SIMI_MN+

SIMI_AM+

8 Area–weighted proximity PROX_AM+

9 Shape and correlation length of

large patches

SHAPE_AM+

FRAC_AM+

GYRATE_AM+

10 Perimeter-area coefficient of

variation

PARA_CV+

11 Patch size variability AREA_CV+

CORE_CV+

DCORE_CV+

12 Proximity index coefficient of

variation

PROX_CV+

13 Edge/patch density ED+

LSI+

PD+

CWED+

14 Interspersion/juxtaposition IJI+

15 Mean perimeter–area ratio PARA_MN+

16 Splitting index SPLIT+

17 Patch density PD+

18 Mean patch size AREA_MN+

CORE_MN+

GYRATE_MN+

DCORE_MN+

19 Edge contrast coefficient of

variation

ECON_CV+

20 Edge + aggregation ED+

CWED+

LSI+

AI�
PLADJ�
CLUMPY�
FRAC_AM+

Table 3 (Continued )
Component
number

Component name High
loadings

21 Split + cohesion PLADJ�
SPLIT+

COHESION�

22 Disjunct core area density DCAD

23 Fractal dimension coefficient of

variation

FRAC_CV

24 Area–weighted similarity SIMI_AM

The components are listed in the order of the percentage of classes

across regions (Table 4) containing that component. They are given

a name based on the dominant factor loadings in the PCA. The

metrics with the largest positive and negative loadings are listed.
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identified five components that were present in only two of

the 16 cover classes across the three regions. These

infrequent components are not necessarily all ‘‘rare’’

dimensions of structure that are present only in a particular

cover class in a particular study region. Rather, two of these

five components (‘‘edge + aggregation’’ and ‘‘splitting

index + cohesion’’ in Table 4) were components that in

those particular cover classes combine two universal

components. Edge density, splitting index, and aggregation

are independent components in most cover classes in most

regions, but are combined into complex components in a

few cover classes. As a result, aggregation, like edge

contrast, is a completely universal component of class-level

landscape structure. All cover classes have either a pure or

mixed component related to class-level aggregation metrics,

such as aggregation index, percentage of like adjacencies,

and clumpiness index (McGarigal et al., 2002). Likewise,

‘edge density’ and ‘splitting index’ are more universal than

their raw scores indicate, with 62% and 56% of cover classes

containing a pure or mixed edge or splitting component,

respectively.

3.1.2. Strength of class-level components
Using the average eigenvalue and percent variance criteria, we

found seven class-level landscape structure components

(‘‘aggregation’’, ‘‘large patch dominance’’, ‘‘shape and correla-

tion length of large patches’’, ‘‘patch size variation’’, ‘‘edge/

patch density’’, ‘‘mean patch size’’, and ‘‘edge + aggregation’’)

that were particularly strong. When present, each of these

components explained on average >10% of the variance

among the 49 class-level metrics (Table 4). Thus, these seven

components are globally strongest across all cover classes and

regions.

3.1.3. Consistency of class-level components
Most of the 24 class-level landscape structure components

were highly consistent among cover classes and among

regions based on average in-group pair-wise correlation of

pPCA loadings (Table 4). The average in-group pair-wise

correlation among factor loadings was 0.704, compared to the

average correlation of all pair-wise combinations of 0.05.

Fifteen of the 24 clusters had in-group correlation of factor

scores>0.7, indicating remarkable consistency in the meaning

of most components.



Table 4 – Universality, strength, and consistency of class-level landscape configuration components

No. Component name %MA %CO %ID %Total Average
eigenvalue

%Variance
explained

Average
in-group

correlation

1 Edge contrast 100 100 100 100 3.51 7.16 0.65

2 Patch shape complexity 86 100 80 94 3.34 6.39 0.72

3 Aggregation 86 75 100 88 6.44 11.50 0.79

4 Nearest neighbor distance 86 75 100 88 2.18 3.90 0.82

5 Patch dispersion 86 100 80 88 1.09 1.95 0.75

6 Large patch dominance 71 75 100 81 6.91 11.46 0.71

7 Neighborhood similarity 86 50 100 81 2.69 4.46 0.79

8 Area–weighted proximity 86 100 40 81 1.54 2.55 0.56

9 Shape and correlation length of large patches 71 75 80 75 5.43 8.31 0.74

10 Perimeter–area coefficient of variation 71 75 60 69 1.22 1.71 0.73

11 Patch size variability 86 25 60 63 4.67 5.96 0.72

12 Proximity index coefficient of variation 29 100 60 56 1.35 1.55 0.58

13 Edge/patch density 71 75 20 50 6.09 6.21 0.80

14 Interspersion/juxtaposition 57 50 40 50 1.29 1.32 0.68

15 Mean perimeter–area ratio 29 50 60 44 2.82 2.52 0.73

16 Splitting index 43 50 40 44 1.12 1.00 0.77

17 Patch density 14 75 40 38 2.11 1.61 0.57

18 Mean patch size 14 25 40 25 6.69 3.41 0.80

19 Edge contrast coefficient of variation 14 50 20 25 1.59 0.81 0.65

20 Edge + aggregation 14 25 0 13 8.47 2.16 0.82

21 Split + cohesion 14 25 0 13 3.32 0.85 0.72

22 Disjunct core area density 14 0 20 13 1.69 0.43 0.26

23 Fractal dimension coefficient of variation 14 0 20 13 1.63 0.42 0.73

24 Area–weighted similarity 0 50 0 13 1.54 0.39 0.81

Universality is measured as the percentage of the classes in each region (%MA, N = 7; %CO, N = 4; and %ID, N = 5) and across all classes and

regions (%total, N = 16) containing the component. The average within-group eigenvalue and total variance explained quantify component

strength. The average in-group pair-wise correlation of PCA factor loadings measure component consistency across classes and regions. The

average of all in-group correlations across all classes, regions and components was 0.704. The average of all pair-wise correlations across all

groups, classes, regions, and components was 0.052.
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3.2. Landscape-level components

We retained between 10 and 14 principal components for the

three landscape-level analyses corresponding to the three

study areas. These components accounted for 88.2–94.1% of

the total variance among the 54 landscape-level metrics

(Tables 5 and 6). We clustered the 35 retained principal

components across the three study regions and decided on a

17-cluster solution. The resulting DA model with 13 landscape

metrics was highly significant based on Monte Carlo permuta-

tions (p < 0.001) and explained >64% of the variance among

groups, with canonical correlations for each of the first four

axes >0.99. These results indicate that the 17 clusters

identified in the landscape-level analyses are highly homo-

geneous and strongly distinguishable based on PCA factor

loadings. The partial DA model removing regional effects was

as highly significant as the full model. Thus, at the landscape-

level, as at the class-level, differences among regions have

little effect on cluster homogeneity or separation.

3.2.1. Universality of landscape-level components
Eight landscape-level structure components were completely

universal (i.e., were present in all three regions) and an equal

number were present in only one of the three regions (Table 7).

Unlike in the class-level analyses, none of these ‘‘rare’’

components were combinations of other more universal

components. However, in several cases, components were

separated into different clusters, even though they have the
same interpretation based on the dominant factor loadings.

For example, clusters 10 and 11 were both characterized by

high mean radius of gyration and shape complexity, and

clusters 13 and 15 were both characterized by high patch

richness density. In these clusters, similarity in the dominant

loadings was not enough to overcome differences in the

loading structure across all metrics for these components.

3.2.2. Strength of landscape-level components
We found three landscape-level structure components that

were particularly important. These three components had

average eigenvalues >5 and explained, on average, >21% of

the variance among the 54 landscape-level metrics, when

present (Table 7). Two of these components (‘‘contagion/

diversity’’ and ‘‘large patch dominance’’) were substantially

stronger than the others, explaining >21% and 33% of the

variance, respectively. The dominance of these two compo-

nents indicates more aspects of landscape structure are

concentrated onto fewer axes at the landscape-level than

the class-level.

3.2.3. Consistency of landscape-level components
Based on average in-group pair-wise correlation of PCA

loadings, we found that all nine of the landscape-level

structure components with more than a single group member

had in-group correlations >0.6 (Table 7). In addition, the

average in-group pair-wise correlation among factor loadings

was 0.783, compared to the average of all pair-wise combina-



Table 5 – Summary of the landscape-level principal
components analysis results among the three regions

Region Number
of axes

%Variation
explained

Western Massachusetts 11 88.2

San Juan National Forest 14 94.1

Central Idaho 10 90.6

For each region, the table lists the number of axes retained based

on the latent root criterion and the cumulative variance explained

by those axes.

Table 6 – Meaning of landscape-level configuration
components identified through principal components
analysis, clustering, and discriminant analysis

Component
number

Component name High
loadings

1 Contagion/diversity AI+

PLADJ+

CONTAG+

CAI_AM+

ED�
CWED�
LSI�
PARA_AM�
DCAD�
SIDI�
SIEI�

2 Large patch dominance LPI+

AREA_CV+

CORE_CV+

GYRATE_AM+
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tions of 0.09. Indeed, in-group correlation of factor scores for

five of the nine multi-member clusters were >0.8, indicating

extreme consistency in the meaning of landscape-level

structure components in terms of their orientation in metric

space. It is interesting to note that the landscape-level clusters

had substantially higher in-group consistency than those at

the class-level.

COHESION+

DIVISION�
SPLIT�

3 Interspersion/juxtaposition IJI+

4 Edge contrast ECON_MN+

ECON_AM+

TECI+

5 Patch shape variability SHAPE_CV+

FRAC_CV+

6 Mean proximity PROX_MN+

7 Nearest neighbor distance ENN_AM+

8 Patch dispersion ENN_CV+

9 Area–weighted proximity PROX_AM+

10 Patch shape and gyration 1 SHAPE_MN+

FRAC_MN+

GYRATE_MN+

11 Patch Shape and gyration2 SHAPE_MN+

FRAC_MN+

GYRATE_MN+

12 Core area CAI_MN+

CAI_CV�

13 Patch richness density PRD+

14 Mean perimeter–area ratio PARA_MN+

15 Patch richness density PRD+

16 Perimeter–area ratio variation PARA_CV+

17 Mean nearest neighbor distance ENN_MN+

The components are listed in the order of the percentage of

regions (N = 3) containing that component. They are given a name

based on the dominant factor loadings in the PCA. Metrics with the

largest positive and negative loadings are listed.
4. Discussion

There are well over 100 statistical measures of landscape

structure at both the class- and landscape-levels (McGarigal

et al., 2002). It is critical to understand the theoretical and

empirical relationships among these metrics so that informed

decisions can be made regarding the choice of metrics for any

particular application. Many of the metrics are theoretically

related and many others are often empirically associated due

to consistent coordination of different aspects of structure in

real landscapes. It is therefore useful to quantify the

redundancy of landscape metrics to identify a suite of

structure components that together account for the major

independent dimensions of landscape structure exhibited in

real landscapes.

There are four major issues to address in attempts to

describe the global redundancy of landscape metrics. First, it is

essential to distinguish structure at the class-level from

landscape-level. Studies at the class-level describe character-

istics of patch size, shape, and neighborhood of focal cover

class types and are typically used in the context of examining

fragmentation effects. Landscape-level analyses examining

spatial structure in multi-class patch mosaics provide infor-

mation on overall landscape heterogeneity, texture, or

graininess. Thus, it is likely that structure components at

these two levels will differ. Previous studies have considered

metrics at one level only (e.g., McGarigal and McComb, 1995) or

combined metrics from both levels (e.g., Riitters et al., 1995,

but see Linke and Franklin, 2006 and Schindler et al., 2008 for

exceptions). Second, at the class-level it is especially impor-

tant to distinguish between landscape composition and

configuration because they are conceptually distinct aspects

of landscape structure (Fahrig, 1997, 2002). Most metrics

calculated for real landscapes confound different aspects of

composition and configuration (Neel et al., 2004), yet there

have been few attempts to quantitatively separate these

effects (e.g., McGarigal and McComb, 1995; Villard et al., 1999).

The third major issue involves what metrics to include in the

analysis. The patterns of metric redundancy observed are
directly a result of which metrics are calculated. For example,

including several metrics that exhibit similar behavior will

necessarily increase redundancy. Likewise, failure to include

metrics from behaviorally distinct groups will result in

reduced dimensionality of measured landscape structure.

Fourth, it is necessary to separately evaluate different aspects



Table 7 – Universality, strength, and consistency of landscape-level structure components

Component
number

Component name %Total Average eigenvalue %Variance
explained

Average
in-group

correlation

1 Contagion/diversity 100 18.10 33.52 0.92

2 Large patch dominance 100 11.36 21.04 0.84

3 Interspersion/juxtaposition 100 5.80 10.74 0.6

4 Edge contrast 100 2.95 5.55 0.6

5 Patch shape variation 100 2.32 4.29 0.73

6 Mean proximity 100 1.36 2.51 0.89

7 Nearest neighbor distance 100 1.14 2.1 0.84

8 Patch dispersion 100 1.04 1.93 0.86

9 Area–weighted proximity 67 1.32 1.62 0.77

10 Patch shape and gyration 1 33 9.37 5.78 na

11 Patch shape and gyration 2 33 5.59 3.45 na

12 Core area 33 2.11 1.3 na

13 Patch richness density 33 1.99 1.22 na

14 Mean perimeter–area ratio 33 1.57 0.97 na

15 Patch richness density 33 1.56 0.96 na

16 Perimeter–area ratio variation 33 1.39 0.86 na

17 Mean nearest neighbor distance 33 1.31 0.81 na

The percentage of regions (%total, N = 3) containing the component is a measure of component universality. The average in-group eigenvalue

and total variance explained are measures of component strength. The average in-group pair-wise correlation of PCA factor loadings is a

measure of component consistency across regions. The average of all in-group correlations across all regions and components was 0.783. The

average of all pair-wise correlations across all regions and components was 0.094.
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of coordination and redundancy of metrics across many

landscapes. We have used a hierarchical analysis to describe

three measures (universality, strength, and consistency) for

this evaluation. When a single analysis combines the structure

components from hundreds of landscapes across a single

large region, it is not possible to separately measure the

consistency or universality of the identified components.

Thus, such an analysis cannot separate universality and

consistency from component strength. The only way to

separate these three important aspects of structural compo-

nent coordination is to conduct a replicated, hierarchical

analysis.

4.1. Component universality, strength, and consistency

Prior to examining the important structure components in

detail, a short discussion of the broader interpretation of our

measures of component importance is warranted. Of our three

measures, universality may be the most relevant assessment

of importance because it provides a measure of how globally

present the component is across the replicate regions and

cover classes. Universal structure components are more likely

to reflect inherent and independent attributes that have

important implications for understanding the nature of

landscape structure and its relations to ecological processes.

Consistency provides a measure of how similar groups of

structure components are, in terms of their orientation in

metric space. Highly consistent components are those that are

projected in parallel with respect to the metrics that comprise

them, and thus measure the same aspect of landscape

structure. Thus, while universality tells how globally present

a component is, consistency tells us how stable a component

is in terms of the behavior of its constituent metrics. In other

words, consistency measures the variability of the meaning of

the structure component. Thus, component groups with high
levels of consistency allow more precise ecological interpreta-

tion. Consistent components also provide more confidence

that we can reliably represent those components with subsets

of metrics.

Strength measures the total amount of variance explained

by a component. A landscape structure component identified

by PCA or pPCA is ‘‘strong’’ if it captures a relatively large

percentage of the variance among the metrics included in the

analysis. While variance explained is an intuitively appealing

measure of importance, component strength is primarily

related to the number of metrics that load highly onto that

component and is also likely related to the chosen data

reduction technique (e.g., PCA). Thus, ‘‘strength’’ quantifies

the coordination and redundancy of the metrics included in

the chosen analysis. Because we did no variable reduction

prior to our PCA, we included many highly redundant metrics

that necessarily load onto the same component, potentially

making it appear very important. Had we removed correlated

variables prior to analysis, the relative component strengths

would have been quite different. Component strength is

helpful in identifying the number of independent structure

components that can be measured by the full suite of available

metrics and for identifying the degree to which individual

metrics are redundant with one another. However, compo-

nent strength has little additional utility because the degree to

which multiple landscape metrics measure aspects of the

same underlying structure component does not necessarily

provide any information about the ecological importance of a

component in relation to any organism or process of interest.

The strength, universality, and consistency of landscape

structure components are different things, and should be

conceptualized and analyzed separately. Indeed, in both our

class- and landscape-level analyses there were no significant

correlations between component strength, and either com-

ponent universality or consistency.



Table 8 – Seven highly universal and consistent class-level landscape structure components across many different cover
classes in 531 landscapes across three very different and disjunct regions of North America based on the results in Table 3

Component name Description

Edge contrast Degree of ‘‘contrast’’ between the focal class and its neighborhood,

where contrast is user-defined and represents the magnitude of difference

between classes in one or more attributes.

Patch shape complexity Shape complexity of patches of the focal class, where shape is

defined by perimeter–area relationships.

Aggregation Degree of aggregation of cells of the focal class, where large, compact

clusters of cells of the focal class are considered to be aggregated.

Nearest neighbor distance Proximity of patches of the focal class, based on the average or

area–weighted average distance between nearest neighbors.

Patch dispersion Spatial dispersion of patches across the landscape, reflecting whether

patches of the focal class tend to be uniformly distributed or overdispersed

(clumped) based on variability in nearest neighbor distances.

Large patch dominance Degree of concentration of focal class area in few, large patches

with large core areas.

Neighborhood similarity Degree of isolation of patches from nearby patches of the same or similar

class (i.e., degree of similarity of the neighborhood surrounding patches

of the focal class in terms of patch composition).
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4.2. Components of landscape structure

Our results suggest that there are a number of universal and

highly consistent components of landscape structure at the

class-level. These major components and their interpretations

are described in Table 8 and are based on the results in Table 3.

The importance of finding seven highly universal and

consistent structure components is underscored by dramatic

variation in the cover classes included in the analysis from

forest, to grassland, to urban development, to water and

riparian strips, and by the fact that the three regions did not

share a common landcover classification scheme. Given that

these cover class types are constrained by very different

geomorphic and ecological factors, there was no reason a

priori to expect that we would find any components that were

universally important and highly consistent. Two of these

components, patch shape complexity and edge contrast, were

also identified as being important by McGarigal and McComb

(1995); however in that study they were combined into one

component rather than being two independent components.
Table 9 – Seven universal landscape structure components de
disjunct regions of North America based on the results in Tab

Component name

Contagion/diversity Degre

clum

Conta

conta

amon

Large patch dominance Degre

Interspersion/juxtaposition Degre

Edge contrast Degre

user-

in on

Patch shape variability Varia

by pe

Proximity Degre

Nearest neighbor distance Proxi

the a
At the landscape-level nearly half of the independent

landscape structure components we identified were comple-

tely universal across the three regions, and all of these were

highly consistent (Tables 9 and 6). Overall, the structure

components at the landscape-level appeared to be generally

more consistent in their meaning, and perhaps more

universal, than those at the class-level. However, the large

difference in the size of the clusters between the class-level

and landscape-level makes this comparison equivocal. It is

also worth noting that five structure components were

important at both the cover class- and landscape-level (large

patch dominance, edge contrast, aggregation/contagion,

nearest neighbor distance, and patch dispersion).

Other than our ‘‘contagion/diversity’’ component, which is

comparable to their ‘‘image texture’’ component, there is little

concordance between these components and the six compo-

nents identified by Riitters et al. (1995). Some of the

discrepancies are due to differences in the metrics included

in each study. For example, in our analysis interspersion and

juxtaposition (IJI), edge contrast, and patch shape variability
rived from 531 landscapes across three very different and
le 6

Description

e of aggregation of patch types (or the overall

piness of the landscape) and the diversity/evenness of patch types.

gion and diversity are inversely related; clumped landscapes

ining large, compact patches and an uneven distribution of area

g patch types have high contagion and low diversity.

e of landscape dominance by large patches.

e of intermixing of patch types.

e of ‘‘contrast’’ among patches, where contrast is

defined and represents the magnitude of difference between classes

e or more attributes.

bility in patch shape complexity, where shape is defined

rimeter–area relationships.

e of isolation of patches from nearby patches of the same class.

mity of patches to neighbors of the same class, based on

rea–weighted average distance between nearest neighbors.
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represent three independent components based on metrics

that were not included in the Riitters et al. (1995) study. There

are also discrepancies that are potentially due to differences in

scales of the two analyses. Riitters et al. (1995) sampled 85

large landscapes to represent the different physiographic

regions of the United States and all landscapes were included

in the factor analysis. Their individual landscapes were

roughly comparable in size to each of the regions from which

we subsampled landscapes. Thus, they sampled more

coarsely across longer gradients of landscape structure.

Because pattern-generating processes vary so much between

physiographic regions, it is likely more relevant to examine

structure within regions when the goal is to relate pattern and

process, or to relate pattern to the ecology of a particular

organism of interest.

Number of attribute classes (patch richness) was also

important in Riitters et al. (1995) and was a component in two

of our regions, but again these components were sufficiently

different from one another to be clustered separately thus

they have low universality (components 13 and 15, Table 6).

The difference in importance of patch richness is most likely

due to differences in number of classes between the studies (4–

7 in ours versus 37 in theirs) in addition to the effects of

sampling shorter gradients discussed above.

Linke and Franklin (2006) have repeated the class-level

analysis presented here on an independent study area in

Alberta, Canada. Their analysis is thus an independent

evaluation of the universality and consistency of the compo-

nents of landscape structure that we identified in an entirely

different ecological system. They identified 20 clusters, 15 of

which are very similar to the ones reported here at the class-

level. These 15 gradients included all seven parsimonious

structure gradients, with five being nearly universal and

consistent. Linke and Franklin’s (2006) results are highly

concordant with those presented here and suggest that the

patterns of universality, consistency, and importance we

identify may be general properties of landscape mosaics and

not idiosyncratic to the particular study areas that we have

tested.
5. Conclusions

Our study resulted in several major findings. First, metric

redundancy (component strength), universality, and consis-

tency of landscape structure components are different things,

and must be conceptualized and analyzed separately. Com-

ponents in which many metrics participate are not necessarily

any more or less universal or consistent across regions or

cover classes than those with fewer metrics.

Component strength did, however, demonstrate that there

is considerable redundancy among both class- and landscape-

level metrics, as a number of other studies have found. We

were able to reduce 49 class-level and 54 landscape-level

metrics to 24 independent class-level components and 17

independent landscape-level components. While this is a

considerable reduction in the dimensionality, it is far less than

that reported by previous studies (McGarigal and McComb,

1995; Riitters et al., 1995). The fact that we found substantially

less total redundancy among the landscape metrics we
calculated at both the class- and landscape-levels than the

earlier studies may reflect the fact that we computed a number

of new metrics that quantify different aspects of landscape

structure that were not included in the earlier analyses. Using

these new metrics resulted in a number of new dimensions of

independent structure that had not been described before

including ‘‘patch dispersion’’, ‘‘similarity’’, ‘‘area–weighted

mean proximity index’’, ‘‘variability in shape complexity’’, and

‘‘correlation length’’ among others. Clearly the choice of

metrics to be analyzed has a major influence on the observed

redundancy and dimensionality of landscape structure.

Second, there was remarkable universality and consistency

of many of the components we identified at both the class- and

landscape-levels. A fairly large number of class- and land-

scape-level structure components are both highly universal

and highly consistent. These dimensions are likely to be

inherent properties of patchiness measured with the metrics

we used, and are likely to be present and have the same

general meaning in most landscapes. However, there were an

equal number of independent landscape structure compo-

nents identified at both the class- and landscape-levels that

had low universality. In most cases, components that had low

universality were unique dimensions of structure that were

not present in the majority of cover classes or regions. This is

not surprising, as one would expect that there would be some

dimensions of landscape structure that emerge under certain

conditions, and that these conditions would not necessarily be

present in all cover classes or regions. Thus, there seem to be

both universal and idiosyncratic components of landscape

structure at the class- and landscape-levels. This is supported

by the independent evaluation produced by Linke and Franklin

(2006).

We suggest that the components we identified as being

highly universal and consistent form a minimum set of

structure attributes necessary to characterize in studies

seeking to describe structure patterns within particular

landscapes. Further, only one or a few metrics within each

group need to be quantified since they are highly redundant.

Choice of particular metrics would of course also be based on

the research questions being addressed and on known metric

behavior (e.g., Neel et al., 2004). We need to emphasize,

however, that our list of universal and strong components

would not be sufficient to capture the full suite of dimensions

in every study area. Rather, it is likely that in other landscapes

and other regions our universal components will be present

and will consistently be represented by the constituent

metrics, but that other unique components may also be

present. A priori there is no way to determine if and how many

rare, or unique dimensions of landscape structure may exist.

Finally, it is important to remember that our measures of

universality, strength, and consistency refer only to the

components of structure as measured by landscape structure

metrics. They have no inherent connection as such to any

organism or process responses. It is ultimately essential to

interpret the meaning of landscape structure components

with respect to the response of some organism or process of

interest (Tischendorf, 2001). In this paper our interest was

primarily to describe universal and consistent patterns in

objective landscape structure metrics. However, our approach

could easily be adapted to explicitly relate patterns with
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processes. One could use nonlinear regression, canonical

correspondence analysis (CCA), redundancy analysis (RDA), or

classification and regression trees (CART) (Breiman et al., 1984;

ter Braak, 1986; Steinberg and Colla, 1997), for example, to

extract components of landscape structure that are explicitly

related to a response variable, or sets of response variables. In

that context, component strength would provide a measure of

the power of the component to predict the response

variable(s). Likewise, universality and consistency in that

context would reflect the dimensions of landscape structure

that were universally and consistently related to the response

variable(s). Ideally, one would conduct both sets of analyses,

one relating pattern and process, and one describing the major

components of structure. Results of these analyses would

elucidate the differences between what we map and measure

and how the processes we are studying respond to those

patterns.
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